
OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding

Philipp Jovanovic (@daeinar)
Distributed and Decentralized Systems Lab (DEDIS)

École polytechnique fédérale de Lausanne (EPFL)

IEEE International Verification and Security Workshop
2018-07-04, Platja D’Aro

Acknowledgements

 2

Eleftherios Kokoris Kogias
(EPFL, CH)

Nicolas Gailly
(EPFL, CH)

Linus Gasser
(EPFL, CH)

Ewa Syta
(Trinity College, USA)

Bryan Ford
(EPFL, CH)

Talk Outline

• Motivation

• OmniLedger

• Evaluation

• Conclusion

 3

Talk Outline

• Motivation

• OmniLedger

• Evaluation

• Conclusion

 4

The Core of Bitcoin: Nakamoto Consensus
Drawbacks
• Transaction confirmation delay

‣ Bitcoin: Any tx takes >10 mins until confirmed

• Low throughput
‣ Bitcoin: ~4 tx/sec

• Weak consistency
‣ Bitcoin: You are not really certain your tx is

committed until you wait >1 hour

• Proof-of-work mining
‣ Wastes huge amount of energy

The Bitcoin p2p network

The Bitcoin blockchain

}10 mins

} 1 MB blocks

 5

Miner of the
latest block

“Permanently”
committed

transactions

… But Scaling Blockchains is Not Easy

 6

The Bitcoin p2p networkMiner of
latest block

Cannot just add

more hardware for

 better performance!

The Bitcoin blockchain
}

Still
10 mins

} Still 1 MB
blocks

“Permanently”
committed

transactions

What we Want: Scale-Out Performance

Scale-out: Throughput increases linearly with the available resources.
 7

Th
ro

ug
hp

ut
 [t

x/
se

c]

Number of Validators
n 2n 3n 4n 5n 6n

Ideal system
Bitcoin

Towards Scale-Out Performance via Sharding

• Concept:

‣ Validators are grouped into distinct subsets

‣ Each subset processes different transactions

‣ Achieves parallelization and therefore scale-out

• But:

‣ How to assign validators to shards?

‣ How to send transactions across shards?

Blockchain 1

Blockchain 2

Transactions

Transactions

!8

Ela
sti

co

L. Luu et al., A Secure Sharding
Protocol for Open Blockchains,
CCS 2016

Distributed Ledger Landscape

 9

Decentralization

Scale-Out Security

ByzCoin

E. Kokoris Kogias et al., Enhancing
Bitcoin Security and Performance with
Strong Consistency via Collective Signing,
USENIX Security 2016

OmniLedger

RSCoin

G. Danezis and S. Meiklejohn, Centrally Banked Cryptocurrencies, NDSS 2016

Talk Outline

• Motivation

• OmniLedger

• Evaluation

• Conclusion

 10

OmniLedger – Design Goals

 11

1. Full Decentralization
No trusted third parties or

single points of failure

2. Shard Robustness
Shards process txs

correctly and continuously

3. Secure Transactions
Txs commit atomically or

abort eventually

Security Goals

4. Scale-out
Throughput increases linearly in
the number of active validators

5. Low Storage
Validators do not need to store

the entire shard tx history

6. Low Latency
Tx are confirmed quickly

Performance Goals

Assumptions: <= 25% mildly adaptive Byzantine adversary, (partially) synchronous network, UTXO model

Strawman: SimpleLedger

 12

Shard coordinatorOverview

• Evolves in epochs e

• Trusted source releases shard
configuration confe

• Validators:

‣ Bootstrap from the shard ledger
according to confe

‣ Process transactions in parallel using
per-shard consensus Shard

ledgers

Validators

confe

Shard 1
(ByzCoin group)

Shard 3
(ByzCoin group)

Shard 2
(ByzCoin group)

Strawman: SimpleLedger

 13

Security Drawbacks

• Shard coordinator: trusted third party

• No tx processing during validator re-assignment

• No cross-shard tx support

Performance Drawbacks

• ByzCoin failure mode

• High storage and bootstrapping cost

• Throughput vs. latency trade-off
Shard 1

(ByzCoin group)
Shard 3

(ByzCoin group)
Shard 2

(ByzCoin group)

Shard
ledgers

Validators

Shard coordinator

confe

Roadmap

 14
OmniLedger

SimpleLedger

Randomized sharding

Secure system reconfigurations

Atomic cross-shard transactions

Failure-resistant Byzantine consensus

Blockchain pruning

High-throughput low-latency transaction validation

Security

Performance

Roadmap

 15
OmniLedger

SimpleLedger

Randomized sharding

Secure system reconfigurations

Atomic cross-shard transactions

Failure-resistant Byzantine consensus

Blockchain pruning

High-throughput low-latency transaction validation

Security

Performance

Roadmap

 16
OmniLedger

SimpleLedger

Randomized sharding

Secure system reconfigurations

Atomic cross-shard transactions

Failure-resistant Byzantine consensus

Blockchain pruning

High-throughput low-latency transaction validation

Security

Performance

Shard Validator Assignment
• How to assign validators to shards?

‣ Deterministically: Adversary can use
predictable assignments to his advantage

‣ Randomly: Adversary cannot control or
predict assignment

• How to ensure long-term shard security
against an adaptive adversary?

‣ Make shards large enough

‣ Periodically re-assign validators to shards

 17

Shard Validator Assignment

 18

Temp.
leader

Verifiable
randomness rnde

PVSS 
group 1

PVSS 
group 2

2. Randomness generation
via RandHound* (unbiasable)

1. Temp. leader election  
via VRFs (biasable)

Validators

3. Shard assignment
(using rnde)

Validators
(sharded)

• Challenge: Unbiasable, unpredictable and scalable shard validator assignment

• Solution: Combine VRF-based lottery and unbiasable randomness protocol for sharding

*Scalable Bias-resistant Distributed Randomness, E. Syta et al., IEEE S&P’17

Roadmap

 19
OmniLedger

SimpleLedger

Randomized sharding

Secure system reconfigurations

Atomic cross-shard transactions

Failure-resistant Byzantine consensus

Blockchain pruning

High-throughput low-latency transaction validation

Security

Performance

Problem: Does not work in a Byzantine setting as malicious nodes can always abort.

Coordinator Server

Vote yes / no

Query to commit

Commit / rollback

Acknowledgement

{Voting phase

{Completion phase

Two-Phase Commits

 20

Atomix: Secure Cross-Shard Transactions

 21

1 2 3

Client

(1) Initialize

tx tx

cross-shard

transaction tx

inputs outputs

1 3

2

Shards

• Challenge: Cross-shard transactions commit atomically or abort eventually

• Solution: Atomix, a secure cross-shard transaction protocol (utilizing secure BFT shards)

(3b) Rollback(2b) Lock

1 2 3

Client

ACK1 ERR2

1 2 3

Client

reclaim tx inputs

Shards Shards

(3a) Commit(2a) Lock

1 2 3

Client

ACK1 ACK2

1 2 3

Client

commit tx

ShardsShards

Roadmap

 22
OmniLedger

SimpleLedger

Randomized sharding

Secure system reconfigurations

Atomic cross-shard transactions

Failure-resistant Byzantine consensus

Blockchain pruning

High-throughput low-latency transaction validation

Security

Performance

• Challenge: Latency vs. throughput trade-off

• Solution: Two-level “trust-but-verify” validation to get low latency and high throughput

Trust-but-Verify Transaction Validation

 23

core

validatorsoptimistic

validators

clients

tx

tx

tx

shard ledger

large (e.g., 16MB),

re-validated blocks

small (e.g., 500KB)
optimistically validated blocks

Talk Outline

• Motivation

• OmniLedger

• Evaluation

• Conclusion

 24

Implementation & Experimental Setup
Implementation

• Go versions of OmniLedger and its
subprotocols (ByzCoinX, Atomix, etc.)

• Based on DEDIS code
‣ Kyber crypto library
‣ Onet network library
‣ Cothority framework

• https://github.com/dedis

 25

DeterLab Setup

• 48 physical machines
‣ Intel Xeon E5-2420 v2  

(6 cores @ 2.2 GHz)
‣ 24 GB RAM
‣ 10 Gbps network link

• Realistic network configurations
‣ 20 Mbps bandwidth
‣ 200 ms round-trip latency

https://github.com/dedis

Evaluation: Scale-Out

 26

Th
ro

ug
hp

ut
 [t

x/
se

c]

1

10

100

1'000

10'000

100'000

Number of Validators / Number of Shards
70 / 1 140 / 2 280 / 4 560 / 8 1120 / 16

4 4 4 4 4

439
869

1'674
3'240

5'850

OmniLedger
Bitcoin

For a 12.5%-adversary

Evaluation: Maximum Throughput

Results for 1800 validators 27

#shards, adversary 4, 1% 25, 5% 70, 12.5% 600, 25%

OmniLedger
regular 1.38 5.99 8.04 14.52

OmniLedger
confirmation 1.38 1.38 1.38 4.48

OmniLedger
consistency 1.38 55.89 41.89 62.96

Bitcoin
confirmation 600 600 600 600

Bitcoin
consistency 3600 3600 3600 3600

Transaction confirmation latency in seconds for regular and mutli-level validation

latency increase since optimistically validated blocks are batched
into larger blocks for final validation to get better throughput

1 MB blocks

500 KB blocks

16 MB blocks

1 MB blocks

!28

Evaluation: Latency

Talk Outline

• Motivation

• OmniLedger

• Experimental Results

• Conclusion

 29

Conclusion
• OmniLedger – Secure scale-out distributed ledger framework

‣ Sharding via unbiasable randomness for linearly-scaling throughput

‣ Atomix: Client-managed cross-shard transactions

‣ ByzCoinX: Robust intra-shard BFT consensus

‣ Trust-but-verify validation for low latency  
and high throughput

‣ For PoW, PoS, permissioned, etc.

• Paper: ia.cr/2017/406 (published at IEEE S&P’18)

• Code: https://github.com/dedis

 30

Shard 1
(ByzCoinX group)

Shard 3
(ByzCoinX group)

Shard 2
(ByzCoinX group)

Validators

Shard
ledgers

Client
(Atomix coordinator)

tx3,out

tx2,in

tx1,in

Epoch randomness rnde
(RandHound)

Thanks!
philipp.jovanovic@epfl.ch – @daeinar

https://ia.cr/2017/406
https://github.com/dedis

 Network Coding for Distributed Consensus*
 (Beongjun Choi, Jy-yong Sohn, Dong-Jun Han and Prof. Jaekyun Moon)

 �1

• Achievements
• Suggested Network-coded PBFT algorithm [CSHM,ISIT19]

• Obtained Fundamental Bounds for Network-coded PBFT algorithms

• Constructed Optimal Codes using Constant-weight Codes

• Future Works
• Generalize to Systems using Message Digests,  

the output of a Hash function

• Apply the Suggested Codes in Blockchain Systems

�2

Achievements & Future Plan (Summary)

[CSHM, ISIT’19] B. Choi, J. Sohn, D. Han and J. Moon, “Scalable Network-Coded PBFT Consensus Algorithm“, accepted at IEEE International
Symposium on Information Theory (ISIT) 2019.

Making a Consensus in Distributed Networks

• Various Applications
• Database, File Systems

• Tamper-resistant Distributed Ledger: Blockchain

• Making a Decision without a Central Authority

• Byzantine nodes
• Transmit false data to other nodes

• Sufficiently large number of Byzantine nodes mislead the consensus

�3

Practical Byzantine Fault Tolerance (PBFT) [OSDI’99]

• Consider nodes are Byzantine out of nodes. If , then the PBFT
algorithm ensures the agreement of data in finite steps 

• Various Blockchain Systems use PBFT-based consensus protocols

• Ripple, Tendermint, Zilliqa

• Core: nodes sharing a common data transmit what they store

�4

m ≥ 3f + 1f m

Node 2
(A,C,D)

Node 1
(A,B)

Node 3 
(B,C,D)

A B

C, D

[OSDI’99] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in OSDI, vol. 99, 1999, pp. 173–186.

Want to make a consensus on
data blocks A,B,C,D

Issue: Communication burden of PBFT Algorithm

�5
(i.e., cannot increase m)

Node 1

Node 2

Node 3

Leader

Client
Request Preprepare Prepare Commit Response

Comm. burden is one of the major drawbacks
which limits the scalability of PBFT algortihm

Comm. burden : 𝒪(m2)

Alternative: PBFT + Sharding

�6

• Network (Data & Users) is divided into disjoint shards

• Users in each shard is responsible for each data partition

• Various blockchain systems [SIGSAG’18] use this scheme

Comm. Burden : 𝒪(m2/s2)Comm. Burden : 𝒪(m2)
PBFT PBFT+Sharding

s

Partition #1 Partition #2 … Partition #sData

Users
shard #s

[SIGSAC’18] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: scaling blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pp. 931–948.

Sharding: a Special Data Allocation Rule

�7

Data Block 1

Data Block 2

Data Block 3

Data Block 4

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Shard #1

Shard #2

This can be expressed as a matrix G =

1 1 0 0
1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1
0 0 1 1

Node 1

ex. Node 1 is responsible for Data Blocks #1,#2

Issue: Maximum Link Bandwidth

�8

• Sharding: some limited links cover all the communication burden 
 

• Can we spread out this communication, and reduce the maximum link
bandwidth, while maintaining the same total bandwidth?

1

2 3

4

5 6

Nodes 1,2,3 transmit Data blocks #1,#2
Nodes 4,5,6 transmit Data blocks #3, #4

Total Bandwidth = 12
Maximum Link Bandwidth = 2

1 2

3

45

6 Total Bandwidth = 12
Maximum Link Bandwidth = 1

Suggested: PBFT + Network Coding  
 (General Data Allocation Framework)

�9

• Parameters 
  m: # of nodes

n: # of data blocks
f: # of Byzantine nodes

Gij = {1, if node i is responsible for data block j
0, otherwise

G ∈ {0,1}m×n : Data Allocation Matrix

ρi =
∑n

j=1 Gij

n

γa,b =
∑n

k=1 Ga,kGb,k

n
γmax = max

a,b∈[m],a≠b
γa,b

: Storage overhead of node i

: Bandwidth between nodes anda b
: Maximum Link Bandwidth

G =

1 1 0 0
1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1
0 0 1 1

Node 1 is
responsible for

Data Blocks #1,#2

Example: m=6 nodes share n=4 data blocks

�10

Data Block 1

Data Block 2

Data Block 3

Data Block 4

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

G =

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

Example: m=6 nodes share n=4 data blocks

�11

Storage overhead of node i :

Data Block 1

Data Block 2

Data Block 3

Data Block 4

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

G =

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

ρi = ρ = 0.5 for i = 1,⋯,6.

Example: m=6 nodes share n=4 data blocks

�12

Data Block 1

Data Block 2

Data Block 3

Data Block 4

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

G =

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

Bandwidth between nodes 1 and 4: γ1,4 = 0.25
Storage overhead of node i : ρi = ρ = 0.5 for i = 1,⋯,6.

Node 1

Node 4

Example: n=4 data blocks allocated to m=6 nodes

�13

Storage overhead of node i :

Maximum Link Bandwidth:

Data Block 1

Data Block 2

Data Block 3

Data Block 4

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

G =

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

ρi = ρ = 0.5 for i = 1,⋯,6.

γmax = 0.25
Bandwidth between nodes 1 and 4: γ1,4 = 0.25

(since γa,b ≤ 0.25 ∀a, b)

Suggested: Reducing the maximum link bandwidth

�14

• Key Questions [CSHM, ISIT’19]

• How can we design G to reduce the maximum link bandwidth
compared to the sharding protocol?

• Q1: Is there any lower bound on ?

• Q2: How to design the optimal G which achieves the lower bound?

γmax

γmax

[CSHM, ISIT’19] B. Choi, J. Sohn, D. Han and J. Moon, “Scalable Network-Coded PBFT Consensus Algorithm“, accepted at IEEE International
Symposium on Information Theory (ISIT) 2019.

Suggested: Reducing the maximum link bandwidth

�15

• Key Questions [CSHM, ISIT’19]

• How can we design G to reduce the maximum link bandwidth
compared to the sharding protocol?

• Q1: Is there any lower bound on ?

 >> Result #1. Maximum link bandwidth satisfies .

• Q2: How to design the optimal G which achieves the lower bound?

 >> Result #2. Provided optimal G which satisfies  
 using Constant Weight Codes [TIT’90]

γmax

γmax

γmax ≥ γ⋆(ρ)

γmax = γ⋆(ρ)

[CSHM, ISIT’19] B. Choi, J. Sohn, D. Han and J. Moon, “Scalable Network-Coded PBFT Consensus Algorithm“, accepted at IEEE International
Symposium on Information Theory (ISIT) 2019.
[TIT’90] A. E. Brouwer, L. B. Shearer, N. Sloane et al., “A new table of constant weight codes,” in IEEE Transactions on Information Theory, 1990.

Necessary Condition for Tolerating Byzantines

�16

• Consider n data blocks are allocated to m nodes,
where each node contains data blocks. Then, nρ

f

(ρ, γmax) ∈ U

A consensus algorithm can tolerate Byzantinesf

U = {(ρ, γmax) :
3f + 1

m
≤ ρ ≤ 1,

γ⋆(ρ) ≤ γmax ≤ ρ}
: Storage Overhead
: Max. Link Bandwidth

ρ
γmax

Compare with Sharding: Reduced

�17

Suggested scheme (network-coded PBFT) can reduce  
compared to the conventional sharding protocol

γmax

(Storage Overhead)

(Maximum Link  
Bandwidth)

γmax

Region U for n=8, m=8, f=1

�18

1

1

ρ

γmax

4
8

5
8

7
8

6
8

0.25
0.375

0.625
0.75

Replication
Sharding
Network Coding

0.5 0.25

0.625 0.375

0.75 0.625

0.875 0.75

1 1

ρ γ⋆(ρ)

Feasible Region U for n=8, m=8, f=1

�19

1

ρ

γmax

4
8

5
8

7
8

6
8

0.25
0.375

0.625
0.75

Replication
Sharding
Network Coding

This point  
 is achievable by using…

G =

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

(ρ, γmax) = (0.5,0.25)

1

Code for n=8, m=8, f=1,

�20

G =

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

ρ = 0.5, γmax = 0.25

m=(# of nodes)

n=(# of data blocks)

• Each row has weight
• Any two rows share at most columns where  

both have the element 1.

nρ = 4.
nγmax = 2

Code for n=8, m=8, f=1,

�21

G =

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

ρ = 0.5, γmax = 0.25

m=(# of nodes)

n=(# of data blocks)

• Each row has weight
• Any two rows share at most columns where  

both have the element 1.

nρ = 4.
nγmax = 2

Node 1

Node 7

Code for n=8, m=8, f=1,

�22

G =

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

ρ = 0.5, γmax = 0.25

m=(# of nodes)

n=(# of data blocks)

• Note: Every row is a codeword of constant weight codes [TIT’90] 
with parameters (n, d, w) = (n,2⌈n(ρ − γmax)⌉, nρ) = (8,4,4)

Code  
Length

Minimum  
Distance Weight of each codeword

[TIT’90] A. E. Brouwer, L. B. Shearer, N. Sloane et al., “A new table of constant weight codes,” in IEEE Transactions on Information Theory, 1990.

Code for n=8, m=8, f=1,

�23

ρ = 0.5, γmax = 0.25

A,B, 
C,D,

B,C, 
E,H,

A,C, 
E,G,

C,D, 
G,H,

A,B, 
E,F,

A,D, 
F,G,

B,D,  
F,H,

E,F, 
G,H,

Data Blocks 
A, B, …, H

Each node contains
 blocksnρ = 4

Any two nodes share 
at most blocksnγmax = 2

A,D

(none)

Future Plan

• Generalize to systems using message digests
• The suggested scheme assumes that plaintext is transmitted across

different nodes.

• In practical blockchain systems (e.g. Bitcoin, Ethereum, Zilliqa),  

data blocks are compressed by a hash function before transmission,
due to the large size of data blocks. 
 
>> The advantage of the suggested scheme dwarfs when message
digests are used. Appropriate alternatives are required for such
systems.

�24

